If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15m^2+m-6=0
a = 15; b = 1; c = -6;
Δ = b2-4ac
Δ = 12-4·15·(-6)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-19}{2*15}=\frac{-20}{30} =-2/3 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+19}{2*15}=\frac{18}{30} =3/5 $
| Y=5x+1/2 | | -2(-6-x)=16 | | -3(-8+2x)=4x-6 | | 35k^-22k+7=4 | | X+7-5/3x-(2x-8-x)=0 | | -4(4x-7)=60 | | 2x+8=-3x-6 | | 8x^+21=-59x | | 6(t-2)=-18 | | 8c-18+5c=4 | | Y=10x+14x(x-7) | | 2(-3+2p)=4p-6 | | 12a-4=15 | | 2x^+3x=6 | | 7k^-6k+3=3 | | 2x+5(x+4)=3x-x-7 | | 25+-8x=-15 | | 5.6x-2=4.6 | | -29=5(2x-1)+2 | | 7(4-x)=-49 | | 6b^-13b+3=-3 | | 0.5(2k-6)=11 | | R+L=10x+14(x-7) | | 3x+9=6x+42 | | y^2+8y-56=0 | | 5=3x^2+1 | | -(2÷u+6)=3 | | X²+x=0 | | 3r^-16r-7=5 | | d/4.75=-38.95 | | b^+5b-35=3b | | 3m+6=m+10 |